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Target/Background Classification Regularized
Nonnegative Matrix Factorization

for Fluorescence Unmixing
Binjie Qin, Member, IEEE, Chen Hu, and Shaosen Huang

Abstract— Nonnegative matrix factorization (NMF) is usually
applied to multispectral fluorescence imaging for fluorescence
unmixing. Unfortunately, most NMF-based fluorescence
unmixing methods fail to take advantage of spatial information
in data. Besides, NMF is an inherently ill-posed problem,
which gets worse in the sparse acquisition of multispectral
data (from a small number of spectral bands) due to its
insufficient measurements and severe discontinuities in spectral
emissions. To overcome these limitations by exploiting the spatial
difference between multiple-target fluorophores and background
autofluorescence (AF), we propose improved normalized cut
to automatically classify all multispectral pixels into target
fluorophores and background AF groups. We then initialize NMF
by extracting the endmember spectra of target/background
fluorescent components in the two groups, and impose a
L1/2-norm partial sparseness constraint on merely the
abundances of target fluorophores within hierarchical alternating
least squares framework of NMF. Experimental results based
on synthetic and in vivo fluorescence data show the superiority
of the proposed algorithm with respect to other state-of-the-art
approaches.

Index Terms— Fluorescence spectra, insufficient measure-
ments, multispectral imaging, nonnegative matrix factoriza-
tion (NMF), partial sparseness constraint, signal decomposition,
spatial information, target/background classification.

I. INTRODUCTION

IN VIVO multispectral fluorescence imaging instrument
has been widely used to measure and/or record cellular

and subcellular biological processes in the life and medical
sciences, such as drug discovery and disease diagnosis [1].
The vast majority of applications of in vivo fluorescence
imaging are based on epi-illumination planar imaging, where
the exciting source and detectors reside on the same side of
the tissue and the measurements are acquired in reflectance
mode. Given exciting light sources, different fluorophores
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labeled with fluorescent dyes can emit fluorescence photons
from visible to near-infrared wavelengths to generate
multispectral images. The multispectral images involve
multispectral pixels represented by vectors, with each
component being a measurement corresponding to the
specific wavelengths. This fluorescence imaging instrument
enables the simultaneous use of multiple fluorophores to detect
and localize particular components of complex biomolecular
assemblies in the in vivo sample. For most fluorophores,
emission spectra are distinct, but often overlap and become
indistinguishable in the mixed multispectral images. Hence,
spectral unmixing (SUM) [2] is necessary in the multispectral
fluorescence imaging instrument to decompose the mixed mul-
tispectral images D into a product of pure spectral signatures
S, i.e., endmembers, and corresponding fractional abundance
C, indicating the proportion of each endmember. If the end-
member spectra S are identified [3] in advance, C can be easily
estimated by the use of supervised SUM methods such as
least squares method. However, the factory-provided reference
endmember spectra used in the supervised SUM are uncertain
and always require extensive calibration efforts for the end-
member identification [3]. Therefore, the unsupervised SUM
has been developed to simultaneously estimate the spectra and
abundances without a priori knowledge about endmember
spectra.

In designing, implementing, and assessing the fluores-
cence imaging instrument, there are some practical challenges
must be overcome, among which the so-called autofluores-
cence (AF) [1], [4] can be produced by some proteins such as
collagens and other biological materials when they are excited
by appropriate visible light in in vivo fluorescence imaging.
Generally, AF originates from all possible background distur-
bances, which mainly include two kinds of sources [1], [4]:
1) the AF caused by the natural fluorescent molecules in
tissue and food and 2) some instrument-based noise, shading,
and leakage light from exciting filters. Therefore, AF stems
from various sources covering large background areas, and
has a dispersive spatial distribution. Furthermore, the AF
wavelength ranging from 400 to 700 nm is overlapped with
the emission spectra of most fluorophores. Due to these
extensive overlaps occurring between the fluorophores and
AF in the spatial and spectral distributions, it is difficult
to blindly separate multiple fluorophores from AF when the
AF is regarded as a constituent component by the current
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unsupervised SUM methods. Alternatively, some hardware-
based methods subtract an AF estimate from observation data
after using extra excitation filters or extra unlabeled samples
to acquire bare AF images [1], [4]. To successfully practice
these methods, we must carefully match the specific filter
sets with the spectral properties of both AF and fluorophores.
In many cases, none of the mentioned methods in the instru-
ment design can fully remove the AF from the fluorescence
imaging.

As an unsupervised data decomposition (or blind source
separation) technique, nonnegative matrix factorization (NMF)
has been successfully applied to blindly separate several source
signals in SUM [4], [5], biomedical source separation [6], [7],
and nondestructive testing [8]. However, there are three
shortcomings. First, NMF suffers from an ill convergence
problem such that starting from different initial search [9]
points results in different values for the elements of C and S
matrices. Especially, the ill convergence problem becomes
worse when there are insufficient measurements and low
spectral resolutions in the sparse acquisition of multispectral
fluorescence imaging data from a small number (e.g., 3–10)
of spectral bands. However, this sparse acquisition can be
fast and cost-effective in clinical applications. Therefore,
different NMF studies have proposed appropriate initial
values [9] and some additional regularization constraints
(such as sparseness [10], [11] and smoothness constraints [8])
to ensure the optimal NMF solution. Second, current
sparseness constraints [10], [11] for strengthening part-based
representation do not discriminate sparse components from
nonsparse components, limiting unmixing accuracy when
only some special targets of interest are sparse while a
specific background component is nonsparse. In fluorescence
imaging, some sparseness-constrained methods [4], [12], [13]
update the whole abundance matrix of all components so
that the abundance matrices of fluorescent targets and AF
may interfere with each other in NMF. Third, NMF does
not consider spatial information of neighboring pixels from
specific components to find more intuitive and interpretable
unmixing solution of abundance matrix C.

To overcome these limitations of NMF, this paper proposes
unsupervised target/background classification regularized
NMF (TBCR-NMF)1 with partial sparseness constraint.
The motivation is based on the following two facts. First,
multiple fluorophores tend to locally accumulate in specific
biological tissues so that their sparse spatial distributions are
usually confined to relatively small areas, while background
AF propagates at all directions and diffuses widely over large
areas. This spatial distribution difference between multiple
target fluorophores and background AF is preserved across
the whole spectral bands, although the sparse acquisition
introduces sharp discontinuity in the spectral emissions across
the multiple spectral bands. Second, the set of pixels in
the multiple localized fluorophores similarly exhibits high
intensities within local patches and can be classified into
a single target group, while the set of pixels in the large
background areas contains low intensity pixels that can

1http://www.escience.cn/people/bjqin/research.html

be grouped as a single background group. This inherent
target/background contrast is still preserved across the
multiple spectral bands in the fluorescence imaging.

With the above analysis facilitating the development of
unsupervised target/background classification without any
training samples [2], [14], we propose TBCR-NMF from
the following two aspects. First, an unsupervised target/
background classification is implemented as a preprocessing
that extracts endmembers and corresponding abundances
to optimally initialize NMF. In solving the local minimum
problem of NMF, most initialization methods [15], [16] have
not used the spatial information in the source spectral data and
therefore cannot accurately identify the endmembers (and their
corresponding abundance) for the near-optimal starting point
for NMF. In this paper, initial target/background classification
is helpful to discriminably extract the endmembers from the
localized target regions and large background regions. Then,
we initialize the abundance matrix C by fixing the spectra S
during the first ten iterations of NMF. Second, the TBCR-NMF
facilitates optimal fluorescence unmixing by imposing partial
sparseness constraints on the abundances of multiple target
fluorophores but not on the abundance of diffusive AF. In sum-
mary, classifying mixed multispectral data into two groups is a
useful strategy for initializing and regularizing NMF, such that
the target/background classification can transfer the classified
spatial structures [17] into the accurate and unique solution of
NMF-based unmixed results. The most recent trend of utilizing
the spatial information and sparsity for unmixing/classification
of multispectral image has enabled the realization of
some new computing model in multispectral/hyperspectral
imaging [18]–[21].

Traditional multispectral image classification [22] methods,
such as unsupervised (e.g., K-means, kernel-based nonpara-
metric method) and supervised (e.g., maximum likelihood,
support vector machine), have considered the pixel-wise spec-
tral dissimilarity between two pixels to group the image data
into a finite number of discrete classes without using spatial
dependence. To reduce the labeling uncertainty that exists
when only the spectral information is used, recent research
has introduced the spatial contextual information into the joint
spectral–spatial classification, which generally exploited the
highly correlated regional information (entropy, variance, etc.)
extracted from the standard (such as the crisp neighbor set
employed by Markov random field modeling) or adaptive
neighbor system in the image. Rather than defining a crisp
neighbor set containing insufficient neighboring samples for
every pixel, image segmentation [22] is another approach
to include spatial information in classification, enabling the
large neighborhood definition by partitioning an image into
nonoverlapping large homogeneous regions. Many algorithms
have been proposed to address image segmentation problem,
such as region-growing algorithms, and watershed methods.
In this paper, only binary image segmentation implementing
target/background homogeneous region partition is desirable
for the subsequent target/background classification.

As an excellent binary image segmentation algorithm,
the original normalized cut (Ncut) [23] is done by
partitioning all graph nodes (i.e., pixels) of whole image into
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two disjoint parts. Rather than focusing on local features
and their neighboring consistencies in the image data,
Ncut aims at extracting the global impression of an
image. It is assumed to be capable of utilizing the distinct
global dissimilarities between target fluorophores and
background AF in the whole fluorescence images to
implement target/background segmentation. However, there
are indeed more than two classes in the multispectral
fluorescence images in the presence of multiple fluorophore
targets. It is possible that the spectral emissions of some
fluorescence targets are more similar to the AF spectral
emission than other fluorescence targets. In this case,
Ncut-based method will lead to a wrong target/background
classification by grouping some fluorescence targets into the
background AF group. To ensure accurate target/background
classification, we modify classical Ncut method [23] to
recursively repartition the large group of previous bipartition
result if the number of groups segmented by Ncut is less
than the number of endmembers in the fluorescence imaging.
As a result, all the pixels of the multispectral images are
classified into several groups, which further are simply
merged into two main groups: the largest group is the
background AF group and the rest of the smaller groups
will join together into the target fluorescence group. Based
on the improved Ncut-based classification, this paper has the
following two contributions for the fluorescence SUM. First,
by performing improved Ncut-based bipartitioning of target
fluorescences and background AF groups, we propose target/
background classification to benefit the endmember identifi-
cation from the target and background groups for accurately
initializing NMF. Second, this target/background classification
facilitates imposing L1/2-norm [24], [25] partial sparseness
constraint on the abundances of the target fluorescent group
but not on that of AF group in the NMF, which is based on
hierarchical alternating least squares (HALS) framework. The
remainder of this paper is organized as follows. Section II
describes the idea and the details of the proposed TBCR-NMF
algorithm. Section III provides experimental results on syn-
thetic and in vivo fluorescence imaging data. The conclusion
and discussion are given in Section IV.

II. MATERIALS AND METHODS

The fluorescence image data acquired with multispectral
imaging instruments comprise four contiguous bands in this
paper. A multispectral data set is usually stacked as an image
cube and thus can be treated as a 3-D volumetric data set
with two spatial axes (X and Y) and one spectral axis (λ),
as illustrated in Fig. 1. From a data-flow point of view, the
flowchart of the proposed algorithm can be characterized as
the following (see Fig. 1). First, a multispectral image cube
is iteratively segmented into multiple separated homogeneous
regions using the improved Ncut algorithm. Second, we further
group these regions into target and background groups by
classifying the largest region into the background group while
merging all other small regions into the target group. Third,
endmember extraction methods are employed to extract the
spectral signatures S of the target fluorescences and AF from
the target and background regions for the NMF initialization.

Fig. 1. Flowchart of the proposed TBCR-NMF algorithm.

Finally, NMF with partial sparseness constraint on the multiple
target fluorescences is implemented to achieve the final SUM
results.

A. Improved Ncut for Target/Background Classification

To distinguish the target fluorescence endmembers from
AF endmember for accurately initializing NMF, we improved
the classical Ncut [23] image segmentation method to globally
classify the fluorescence image data into target and back-
ground groups. For the purpose of global target/background
spatial segmentation, it may be inadequate to analyze mul-
tispectral image cube band by band or slice by slice using
conventional local feature measures (entropy, variance, etc.)
operating in the 2-D image space. Therefore, the whole multi-
spectral image cube is considered as an image represented as
a 2-D lattice of p-dimensional vectors (pixels), where p = 4
for our multispectral images acquired from four spectral bands.
The space of the lattice is known as the spatial domain, while
the multispectral fluorescence spectra are represented in the
range domain.

According to the above definition and graph theory, the
whole multispectral fluorescence image cube can be repre-
sented as a weighted undirected graph G = (V, E), where
the graph nodes V are defined with pixels, with the spectrum
vectors being normalized with zero-mean and unit variance,
and the edges E connect every pair of nodes. The weight
w(i, j) on each edge represents the similarity between the
nodes i and j . A graph can be optimally bipartitioned into
two disjoint sets A and B = V − A by removing the edges
connecting the two parts, such that the intragroup similarity
is high and the intergroup similarity is low. The degree of
dissimilarity between these two sets, also called cut, is defined
as cut(A, B) = ∑

u∈A,v∈B w(u, v) where u and v are nodes of
the graph. The cut is equal to the total weight of the removed
edges. The optimal bipartitioning of a graph is the one that
minimizes this cut value. However, the criterion for finding the
minimum cut always favors grouping small sets of isolated
nodes in the graph, because the cut does not contain any
intragroup information.

To get an unbiased optimal bipartition, Ncut [23] is pro-
posed as a fraction of the total edge connections to all the
nodes in the graph

Ncut(A, B) = cut(A, B)

assoc(A, V)
+ cut(A, B)

assoc(B, V)
(1)
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where assoc(A, V) = ∑
u∈A,t∈V w(u, t) is the total connec-

tions from nodes in A to all nodes in the graph and assoc(B, V)
is similarly defined. The Ncut grouping algorithm consists of
the following steps. First, let H be an N × N diagonal matrix
with h on its diagonal and N be the number of the nodes
and h(i) = ∑

j w(i, j), where the weight w(i, j) is defined

as w(i, j) = e−(‖xi−x j ‖2/σ ), with xi and x j representing the
normalized spectra of nodes i and j , which have zero-mean
and unit variance, respectively. In addition, σ = 0.1 is a
positive scaling factor determining the sensitivity of w(i, j)
to the spectrum difference between nodes i and j ; Then, we
solve (H − W)v = ηHv for eigenvectors v with the smallest
eigenvalues η, where W is N × N symmetric weight matrix
with the element being w(i, j). At last, use the second smallest
eigenvector v1 and the splitting value 0.4 to bipartition graph,
i.e., the bipartition is implemented by grouping the i th node
into A if the i th component of eigenvector v1 is larger than 0.4,
B otherwise.

For the multiple fluorophores in in vivo fluorescence
imaging, there are more than two classes in the fluorescence
imaging. Therefore, the spectral emissions of some
fluorescence targets are more similar to those of AF than
other fluorescence targets, such that Ncut will lead to a wrong
target/background classification by aggregating some fluores-
cence targets into the background AF group. To avoid this
misclassification, we need to modify the recursive two-way
Ncut method. Considering that background AF (including
various background noises) has a dispersive spatial distribution
while multiple fluorophores are locally accumulated at specific
locations, we assume that the pure background AF regions are
larger than the target fluorophore regions. Through Ncut-based
bipartition, the larger group is either pure AF region or the
regions that contain AF and some target fluorophores. In the
latter case, the larger group will be bipartitioned again until
all target fluorophores are separated from the AF region.
Because the aim of the improved recursive Ncut method is
to classify all pixels of the whole fluorescence region into
two classes, background AF and target fluorescence groups,
all the separated smaller regions except the largest AF region
are finally combined together into the target fluorescence
group.

Based on the above analysis, we propose an improved
recursive Ncut method. First, to use the Ncut method,
each 992 × 992 spectral image is decimated into a size of
100 × 100 pixels. Decreasing the number of graph nodes from
near N = 1 000 000 to N = 10 000 by this image subsampling
can solve the large graph problem, which consumes too much
memory and requires huge computational complexity in
handling large-scale weight matrix W (with N × N elements)
for the graphical representation and generalized eigenvalue
computation. In our experiments, changing image size from
200 × 200 pixels to 100 × 100 pixels can obviously decrease
Ncut computation time from 50.6 to 2.8 s, but does not
have an adverse effect on target/background classification,
because the Ncut method’s graph-based generalized eigenvalue
computation is less sensitive to the spatial information lost dur-
ing subsampling than other local feature-based segmentation.
Besides, even if small noisy misclassification occurs, it cannot

affect the final TBCR-NMF’s performance, because we only
require an approximate global target/background classification
for further decomposition refinement by TBCR-NMF itself.
Second, after the initial Ncut-based bipartition, only the large
cluster of the bipartition result will be chosen for subsequent
bipartition. Third, we recursively repartition the large cluster
of previous bipartition result if the number of intermediate
clusters segmented by Ncut is less than the number of
endmembers in the fluorescence imaging. Finally, the largest
group is considered as the background AF group and all the
rest of smaller groups are merged into the target fluorescence
group. The intermediate target/background classification
result after improved Ncut segmentation is shown in Fig. 1,
where the different colors mean the different intermediate
clusters sequentially segmented by the improved Ncut. The
final target fluorescence group is formed by grouping all the
small clusters except the large cluster of AF region.

B. Endmember Extraction for NMF Initialization

To find the optimal product CS that best approaches
the mixed image data matrix D ∈ R

N×L+ (N is the total
pixel number in a single image and L is the spectral band
number), HALS-based NMF [26]–[28] is adopted to perform
sequential constrained minimization on a set of subobjective
functions F(C:k, Sk:) = (1/2)‖Rk − C:kSk:‖2

2, where each
column C:k of C ∈ R

N×K+ represents the spatial distribution
of one endmember component, K is the number of the
endmember, and each row Sk: of S ∈ R

K×L+ represents the
spectrum of a specific endmember. for k = 1, 2, . . . , K ,
Rk = D − ∑

i �=k C:i Si:.
To initialize NMF, we use the pixels of two groups to deter-

mine the corresponding spectra for the different fluorescence
components. We assume that the first (K − 1) constituent
components represent the fluorophores and the last component
describes the AF. AF’s initialized spectrum (SK ) is set to
the average spectrum of all AF pixels, while the spectra
S1, S2, . . . , SK−1 can be set by the endmember extraction
method, i.e., automatic target generation process (ATGP) [29],
which searches the most distinctive pixels in the target
fluorescence group with the orthogonal subspace projection
approach. To remove the residual AF effect on the fluo-
rescence targets, we subtract the average AF intensity SK

from each band’s data in the fluorescence target group before
using the ATGP to obtain the endmember spectra of fluo-
rophores. At last, the abundance matrix C can be initial-
ized by fixing the spectra S during the initial ten iterations
of NMF.

C. Partially Sparse NMF

A sparseness constraint is helpful in improving signal
decomposition uniqueness along with enforcing a local-based
representation [30]. To implement L p (0 < p < 1)-norm
based sparseness constraint that can give stronger sparse
NMF solutions [24], [25] than the L1-norm [10], we impose
the L1/2-norm sparseness constraint on the abundances of
multiple fluorophores. For k = 1, 2, . . . , K − 1, we propose
the subobjective function of HALS-based NMF with
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the L1/2-norm as

F(C:k, Sk:) = 1

2
‖Rk − C:kSk:‖2

2 + 2θ

N∑

i=1

(Cik)
1/2 (2)

where the θ is a regularized parameter to balance the tradeoff
between the approximation accuracy and the sparseness of the
multiple fluorophores’ abundances. The gradient derivation
of F(C:k , Sk:) with respect to C:k is

∂ F(C:k, Sk:)
∂C:k

= −(Rk − C:kSk:)Sk:T + θ(C:k)−1/2 (3)

where C−1/2
:k is given by the element-wise square root for each

entry in the vector C:k . By setting (3) to zero, we can get the
updating rule of C:k . However, it involves a rather high com-

putation cost due to the computation of the term C−1/2
:k . To cir-

cumvent this problem, we approximate C:k in the θ(C:k)−1/2

term by its estimation Ĉ:k obtained from the previous update,
rather than compute the term C:k directly. Hence, (3) takes a
simplified and more computationally efficient form

∂ F(C:k, Sk:)
∂C:k

= −(Rk − C:kSk:)Sk:T + θĈ:k
−1/2

. (4)

By setting (4) to zero, the rule of updating C:k takes the
following form:

C:k = max
(
eps, (RkSk:T − θ(C:k)−1/2 )/‖Sk:‖2

2

)
(5)

where eps is a very small constant (∼10−16) and prevents
from dividing by zero. The rules of updating Sk: for (2) is

Sk: = max
(
eps, C:k T Rk/‖C:k‖2

2

)
. (6)

For k = K , the subobjective function has no sparseness
constraint, and the corresponding updating rules are the same
as the other parts of the HALS optimization.

For the convenience of parameter setting, we convert the
regularized parameter θ of TBCR-NMF into a desired sparsity
value φ [10], which represents the sparseness degree that we
expect the abundances of multiple fluorophores to reach. The
sparsity value φ, being 0 for nonsparse results and 1 for
extremely sparse results, can be defined as

φ(Ck) =
√

N − (∑N
n=1 |cnk |/

√∑N
n=1 c2

nk

)

√
N − 1

(7)

where Ck ∈ R
N×1+ is the kth column of abundance matrix C,

and cnk is each element at Ck with n = 1, 2, . . . , N .
Specifically, for each fluorophore’s abundance C:k that has
a corresponding regularized parameter θk , we use a method
similar to that in [31] to directly control the θk value:
θk is initialized to 0.001, and after each iteration, the current
sparsity φ is computed by (7) for the abundance C:k ; then θk is
increased by 5% if the current sparsity is less than the desired
sparsity value φ; otherwise, θk is decreased by 5%.

The detailed pseudocode of partially sparse NMF algorithm
is summarized in Algorithm 1. The algorithm computation
is terminated when the absolute value of difference between
the two adjacent objective functions is less than 10−4, or the
maximum number of iterations exceeds 1000.

Algorithm 1 Partially Sparse NMF

Input: Data matrix D ∈ R
N×L+ and initial C ∈ RN×K+ and

S ∈ RK×L+ and φ
Output: C, S

1 for k = 1 to K − 1 do
2 θk = 0.001;
3 end

4 while stopping criterion not satisfied do
5 for k = 1 to K do
6 if k < K then
7 C:k = max(eps, (RkSk:T − θk(C:k)−1/2 )/ ‖Sk:‖2

2);
8 if Sparsity(C:k ) > φ then
9 θk = 0.95θk ;

10 else
11 θk = 1.05θk ;
12 end
13 else
14 C:k = max(eps, RkSk:T / ‖Sk:‖2

2);
15 end
16 Sk: = max(eps, C:k T Rk/ ‖C:k‖2

2);
17 where Rk = D − ∑

i �=k C:i Si:;
18 end
19 end

III. RESULTS

We first use synthetic data to evaluate the performance
of TBCR-NMF algorithm by comparing TBCR-NMF
with HALS-based NMF with L1 sparseness constraint
(L1-HALS) [26] and sparse NMF (S-NMF) [4]. L1-HALS
introduces the sparseness constraint into all abundances,
while S-NMF uses dynamic threshold to add the sparseness
constraint into the abundances of multiple fluorophores.
L1-HALS has θ , while S-NMF has φ to control the
sparseness degree in NMF. S-NMF initializes the endmember
spectra S with the calibrated spectra through calibration
experiment in advance [4]. Therefore, we regard S-NMF as
a Pure method and TBCR-NMF as a Graph method, while
L1-HALS with random initialization is a Random method.
Both Graph and Random methods do not use a priori
knowledge of calibrated endmember spectra, while the Pure
method needs the calibrated endmember spectra.

To evaluate the performances of the different algorithms,
the spectral angle distance (SAD) [32] is defined to measure
the angle (or similarity) between the kth true endmember
signature Sk and its estimate Ŝk

SADk = arccos

(
Sk ŜT

k

‖Sk‖2‖Ŝk‖2

)

. (8)

Furthermore, root mean square error (RMSE) [33] is taken
to evaluate the similarity between the true and estimated
abundances

RMSEk =
√
√
√
√ 1

N

N∑

i=1

(Cki − Ĉki )
2
. (9)

In general, the smaller value of SAD (or RMSE) means the
better similarity and better unmixing performance of NMF.
At last, the average SAD (SAD) and RMSE (RMSE) for
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Fig. 2. Synthetic Data. (a)–(c) Abundances of AF488, AF555, and AF. (d) Corresponding emission spectra for AF488 (green line), AF555 (blue line), and
AF (red line). (e) Mixed fluorescence image acquired at 555 nm. (f) Grouping result obtained with improved Ncut target/background classification.

all endmember components are used to evaluate the overall
performance of estimating spectral signatures and their corre-
sponding abundances, respectively.

A. Synthetic Data

We use two fluorescence parts, Alexa Fluor 488 and
Alexa Fluor 555 (AF488, AF555; Invitrogen, Carlsbad,
USA), and one AF part to build a simulated phantom [4] in
Fig. 2. The spectral signatures of fluorescence parts are fitted
emission spectral curves of AF488 and AF555 at the spectral
wavelengths from 480 nm to 650 nm with interval of 5 nm,
while AF’s spectral signature is a slowly varying curve in the
same range [see Fig. 2(d), green line for AF488, blue line
for AF555, and red line for AF]. The abundances of AF488
and AF555 consist of two parts: one part is pure fluorescence
dye and the other part is mixed with AF488 and AF555 [see
Fig. 2(a) and (b)]. The mixed part is at the top-left of the
phantom, while the pure parts are at the bottom-left for AF488
in Fig. 2(a) and the bottom-right for AF555 in Fig. 2(b).
According to the sparsity definition in (7), the true sparsity of
the abundance of AF488 (or AF555) is 0.85. Finally, the total
simulated phantom is obtained by adding the two fluorescence
parts and the AF part together, and the abundance intensity
ratio of AF to fluorophores (AF/F intensity ratio) is 0.3.
Fig. 2(e) shows the mixed fluorescence image acquired at
the spectral band of 555 nm wavelength. Fig. 2(f) shows
the classification result of the synthetic data. The target
fluorescence group is obtained by combining three different
fluorescence regions (with different colors), which are

sequentially isolated from the background AF group after
three iterations of the improved recursive Ncut computation.

We test the above-mentioned algorithms’ unmixing perfor-
mances with the metrics of SAD and RMSE, which have
averages (bars) and standard deviations (error bars) resulting
from the 20 runs of each algorithm. The algorithms’ per-
formances are dependent on the initial sparsity parameter φ
(or the regularized parameter θ ). Too small values of φ and θ
cannot represent a reasonable sparsity of unmixed results while
too large values of φ and θ will lead to excessive sparsity and
inaccurate unmixed results. Considering the general sparsity
of abundances for multiple fluorophores in preclinical appli-
cations, we select a series of φ values from 0.5 to 0.9 with
an interval of 0.05 to demonstrate the effects of different
initial sparsity values on the performance of S-NMF and
TBCR-NMF. As for L1-HALS, the θ value is 10−4, 5 × 10−4,
10−3, 5 × 10−3, 0.01, 0.05, 0.1, 0.5, and 1.0.

The performance metrics for different parameters of θ and φ
are shown in Fig. 3 when the AF/F intensity ratio is set to 0.3
with no noise added and with signal-to-noise ratio (SNR)
being set to SNR = 15 dB. L1-HALS’s performance
has been influenced by the regularized parameter θ . The
SAD and RMSE achieved with L1-HALS are the largest
compared with other algorithms. For S-NMF and TBCR-NMF,
their unmixing performances also have been influenced by the
different values of initial sparsity parameter φ, which should
be set to the true sparsity (0.85) of the abundance of multiple
fluorophores in ideal situations. Therefore, too small or too
large φ cannot produce good unmixed results for S-NMF and
TBCR-NMF. In Fig. 3(a), when φ is smaller than 0.65 or larger
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Fig. 3. Algorithm performances (SAD and RMSE) for different values of parameter θ and φ when (a) no noise is added and (b) noise is added with
SNR = 15 dB.

than 0.85, the SAD and RMSE become large and the unmixed
results obtained with S-NMF and TBCR-NMF become worse.
However, TBCR-NMF obtains the smallest SAD and RMSE
among the three algorithms when the sparsity φ changes from
0.50 to 0.90 (or θ changes from 0.0001 to 1.0000). When
the sparsity φ value is set to 0.90 (or 0.50), the poorest
performances are achieved by all three algorithms, among
which the TBCR-NMF is still the best.

The SNR in Fig. 3(b) is set to 15 dB, so that there is
strong noise in the fluorescence data and the performance
of all algorithms degrades with increasing noise levels. The
proposed TBCR-NMF still achieves the smallest SAD and
RMSE when φ ranges from 0.5 to 0.9. The RMSE achieved
by TBCR-NMF is relatively steady when φ ranges from
0.5 to 0.85. When the initial sparsity value φ exceeds the
true sparsity (0.85), the values of SAD and RMSE obtained
by TBCR-NMF increase obviously, but are still smaller than
those obtained by other algorithms. Therefore, TBCR-NMF
can achieve the best unmixed results when there is strong
noise in the fluorescence data.

As low AF/F ratio will highlight multiple localized fluo-
rophores from the background AF, it essentially makes the
mixed spectral data sparser than the high AF/F ratio and
the corresponding NMF problem will have sparser solutions
than the high AF/F ratio. Therefore, the NMF performance
is largely dependent on the AF/F ratio. For simulation exper-
iments, the AF/F intensity ratio ranges from 0.1 to 0.9 with
interval of 0.2. The φ and θ parameters are set to 0.8 and 0.01,
respectively, to achieve the best unmixing performance for all
algorithms.

Fig. 4(a) shows the different SAD and RMSE values for
the different AF/F intensity ratios in the noiseless data. The
initialization is Random method for L1-HALS, Pure method

for S-NMF, and Graph method for TBCR-NMF. Fig. 4(a)
shows that the performances of L1-HALS and S-NMF
algorithms improve with decreasing AF/F intensity ratio. The
unmixed results obtained with L1-HALS are worst compared
with other results. However, TBCR-NMF is not sensitive
to the AF/F ratio and obtains the smallest SAD and RMSE
values in all different AF/F intensity ratios.

Fig. 4(b) shows the performance dependence on the
different initialization methods, when AF/F ratio, φ and θ , are
set to 0.3, 0.8, and 0.001, respectively. L1-HALS is initialized
with Random, Graph, and Pure methods, while S-NMF and
TBCR-NMF are initialized with Graph and Pure methods.
The SAD and RMSE values of L1-HALS using different
initializations are similar and the worst among the three
algorithms due to the sparseness constraint being imposed
on all abundances. S-NMF’s performance improves with the
Pure initialization having a priori knowledge of calibrated
endmember spectra compared with the Graph initialization
without a priori knowledge, while the TBCR-NMF can
obtain the best unmixed results in both initialization methods
even without a priori knowledge of calibrated spectra.

B. In Vivo Experiment I

In this section, we apply the proposed algorithm to
in vivo fluorescence data acquired by the Bio-Real Quick View
3000 (Bio-Real Sciences, Austria) system, which is an epi-
illumination planar imaging system equipped with electron
multiplying charge coupled device (EMCCD) and the light
source of 150 W Xenon arc lamp. In the sparse acquisition
of fluorescence imaging for this work, the EMCCD (Andor
Technology, Ireland, DU885) gets the fluorescence image
(992 × 992 pixels) through four bandpass (30 nm width)
emission filters (Semrock, Rochester, USA).
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Fig. 4. (a) Algorithm performances for different values of AF/F intensity ratio. (b) Algorithm performances for different initialization methods.

Besides the L1-HALS and S-NMF, we also use two
NMF-based SUM algorithms: nonnegative matrix underap-
proximation (NMU)2 [34] and NMF with L0 constraint
(L0-NMF) [35] for comparison. NMU solves NMF problem
with additional underapproximation constraint CS ≤ D which
allows to obtain better part-based decompositions, while
L0-NMF introduces sparseness into all abundances via the
L0-norm constraint. All algorithms assume that the number
of endmembers is 3, or K = 3. The TBCR-NMF, L1-HALS,
NMU, and L0-NMF methods are not initialized with a priori
knowledge of calibrated endmember spectra except the
S-NMF method. The parameter φ for L0-NMF, S-NMF, and
TBCR-NMF is 0.75, the parameter θ for L1-HALS is 0.005.
To reduce computation cost, we use Otsu’s [36] method for
preprocessing to obtain the mouse body mask with whole
fluorescence regions of interest, whereby all algorithms are
applied to the fluorescence data within the mask only. For
the best visual effect, all the observations and unmixed results
(spatial distribution of all constituent components) are shown
with rainbow pseudocolor and overlaid on the gray-scale
photographic image of corresponding mouse.

We first give two in vivo BALB/c mouse experimen-
tal results to validate the proposed method’s performance.

2https://sites.google.com/site/nicolasgillis/code

All animal experiments in this paper were approved by
our institutional review board. In experiment I, AF488
and Alexa Fluor 594 (AF594; Invitrogen, Carlsbad, USA)
fluorescent dyes are diluted to 0.1 μgml−1. AF488 is injected
at the bottom of the body with 20 ng dye, while AF594 is
injected near the neck with the same quantity, and a mixture
of each dye with 10 ng is located at the middle portion of
the body. These three injections are not exactly controlled
with the same depth in tissues. Fig. 5(a)–(d) shows four raw
fluorescence images acquired at 542, 579, 624, and 716 nm
spectral bands. The first two images are excited at 474 nm
and the last two images at 565 nm. The calibrated spectra of
AF488, AF594, and AF [see Fig. 6(a)] are acquired at these
four emission filters by precalibration ex vivo experiments
in the same imaging conditions, while the spectrum of AF
is the average spectrum acquired in some chosen regions
of mouse with no fluorescent dyes. Fig. 6(a) displays that
AF488, AF594 and AF have overlapping emission spectra.
Fig. 6(b) and (c) also shows the calibrated spectra of AF488,
AF555, and AF, acquired ex vivo at the 525, 542, 579,
and 624 nm spectral bands for the next two in vivo fluores-
cence imaging experiments in the following section.

Fig. 5(e) shows the target/background classification result
where the multiple fluorophores are classified as a target
group (red color) and separated from the whole background
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Fig. 5. (a)–(d) Raw fluorescence (AF488 and AF594) images for experiment I acquired at the 542, 579, 624, and 716 nm emission filters; the first two
images are excited at 474 nm and the last two images at 565 nm. (e) Classification results obtained by improved recursive Ncut method. The different unmixed
results obtained by (f)–(h) NMU, (i)–(k) L0-NMF, (l)–(n) L1-HALS, (o)–(q) S-NMF, and (r)–(t) TBCR-NMF.

Fig. 6. (a) Spectra of AF488 and AF594 for experiment I acquired ex vivo at the 542, 579, 624, and 716 nm spectral bands, and average spectrum
of AF acquired from mouse. (b) Spectra of AF488 and AF555 for experiment II acquired ex vivo at the 525, 542, 579, and 624 nm spectral bands, and average
spectrum of AF acquired from mouse. (c) Spectra of AF488 and AF555 for experiment III acquired ex vivo at the 525, 542, 579, and 624 nm spectral bands,
and average spectrum of AF acquired from mouse.

AF group. The unmixed results (abundances expressed as
2-D images) of BALB/c mouse by NMU are illustrated
in Fig. 5(f)–(h), L0-NMF in Fig. 5(i)–(k), L1-HALS

in Fig. 5(l)–(n), S-NMF in Fig. 5(o)–(q), and TBCR-NMF
in Fig. 5(r)–(t). The fluorescence targets are still mixed
with AF in Fig. 5(f) by NMU and in Fig. 5(i) by L0-NMF.



QIN et al.: TARGET/BACKGROUND CLASSIFICATION REGULARIZED NMF 883

Fig. 7. Abundances (expressed as 1-D vectors) C of AF488, AF594, AF, and their spectra S from top row to bottom row for experiment I. The unmixed
results obtained with (a)–(d) NMU, (e)–(h) L0-NMF, (i)–(l) L1-HALS, (m)–(p) S-NMF, and (q)–(t) TBCR-NMF.

There are some missing parts of AF488 in the middle portion
of BALB/c mouse in Fig. 5(l) for L1-HALS, which also
falsely makes the unmixed background AF [Fig. 5(n)] appear
sparser and brighter than it actually is. The TBCR-NMF
and S-NMF can separate the fluorescence targets from AF
in Fig. 5(o)–(q) and Fig. 5(r)–(t), respectively. However, the
unmixed results obtained with TBCR-NMF are smoother and
clearer than S-NMF.

The unmixed results of abundances C (expressed as
1-D vectors) and endmember spectra S are illustrated
in Fig. 7(a)–(d) for NMU, Fig. 7(e)–(h) for L0-NMF,
Fig. 7(i)–(l) for L1-HALS, Fig. 7(m)–(p) for S-NMF and
Fig. 7(q)–(t) for TBCR-NMF, respectively. The TBCR-NMF
algorithm obtains more accurate unmixed fluorescence
abundances compared with the other algorithms. All
algorithms have the highest abundance intensities that
correspond to the true pixel positions of fluorescence targets.
The abundances of AF488 and AF594 are wide and contain
the unwanted AF parts that are not removed with NMU in
Fig. 7(a) and (b) and L0-NMF in Fig. 7(e) and (f). This
AF remainder also can be confirmed by AF’s abundances
[Fig. 7(c) and (g)] obtained with both algorithms. The
L1-HALS [Fig. 7(k)] and S-NMF [Fig. 7(o)] have abnormal
(too large) values in the abundances of AF, except that

the TBCR-NMF [Fig. 7(s)] has slowly varying abundances
of AF. More importantly, the spectra estimated with S-NMF
[Fig. 7(p)] and TBCR-NMF [Fig. 7(t)] are much more similar
to the true calibrated ones [Fig. 5(a)] than other algorithms.

The SAD and SAD values of three unmixed endmembers
for in vivo experiment I are shown in Table I. The smaller the
SAD (or SAD) value, the better the unmixed results.
The average SAD values of all three endmembers represent
the overall performances of all unmixing methods. Therefore,
TBCR-NMF achieves the smallest SAD (0.0943) and the best
unmixing accuracy.

C. In Vivo Experiment II

In experiment II, we use the AF488 and AF555 as two
fluorophores whose spectra are overlapped with each other and
with that of the AF [see Fig. 6(b)]. The AF488 and AF555
fluorescent dyes are diluted to 0.1 μgml−1. AF488 is subcu-
taneously injected at the bottom-right of the body with 50 ng
dye and AF555 is subcutaneously injected on the left and
right sides of body’s middle portion with 50 ng dye. The raw
fluorescence images acquired at the 525, 542, 579, and 624 nm
emission filters are displayed in Fig. 8(a)–(d).

Fig. 8(e) shows the target/background classification
separating the AF and red target fluorescence groups.
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TABLE I

SAD AND SAD RESULTS ON THE In Vivo EXPERIMENTS I AND II (THE SMALLER VALUES MEAN BETTER RESULTS.
THE NUMBER IN BOLD REPRESENTS THE BEST PERFORMANCE)

Fig. 8. (a)–(d) Raw fluorescence (AF488 and AF555) images for experiment II acquired at the 525, 542, 579, and 624 nm emission filters, the first
two images are excited at 474 nm and the last two images at 500 nm. (e) Classification results. The different unmixed results obtained with (f)–(h) NMU,
(i)–(k) L0-NMF, (l)–(n) L1-HALS, (o)–(q) S-NMF, and (r)–(t) TBCR-NMF.

Based on this classification, the unmixed results (abundances
expressed as 2-D images) for BALB/c mouse are illustrated
in Fig. 8(f)–(h) for NMU, Fig. 8(i)–(k) for L0-NMF,
Fig. 8(l)–(n) for L1-HALS, Fig. 8(o)–(q) for S-NMF, and
Fig. 8(r)–(t) for TBCR-NMF. AF488 and AF555 are not
separated from AF by NMU in Fig. 8(f) and (g) and L0-NMF

in Fig. 8(i) and (j). L1-HALS, S-NMF, and TBCR-NMF can
separate the two fluorescence targets from AF in Fig. 8(l)–(n),
Fig. 8(o)–(q), and Fig. 8(r)–(t), respectively. But there are
missing parts of AF in Fig. 8(n) with L1-HALS and Fig. 8(q)
with S-NMF. The TBCR-NMF method can estimate the best
unmixed results compared with other algorithms.
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Fig. 9. Abundances (expressed as 1-D vectors) C of AF488, AF555, AF, and their spectra S from top row to bottom row for experiment II. The unmixed
results obtained with (a)–(d) NMU, (e)–(h) L0-NMF, (i)–(l) L1-HALS, (m)–(p) S-NMF, and (q)–(t) TBCR-NMF.

The unmixed abundances C (expressed as 1-D vectors)
and endmember spectra S are illustrated in Fig. 9(a)–(d) for
NMU, Fig. 9(e)–(h) for L0-NMF, Fig. 9(i)–(l) for L1-HALS,
Fig. 9(m)–(p) for S-NMF and Fig. 9(q)–(t) for TBCR-NMF,
respectively. The TBCR-NMF achieves the most accurate
unmixed results compared with other algorithms. Particularly,
the first row in Fig. 9 displays that AF488 abundance inten-
sities obtained with other algorithms still contain AF parts
that are not fully removed. The second row in Fig. 9 shows
that the AF parts have made contributions to the AF555
abundances with the NMU, L0-NMF and L1-HALS algo-
rithms except the TBCR-NMF and S-NMF. The S-NMF has
abnormal (too large) values for the AF abundance in Fig. 9(o),
while TBCR-NMF can get slowly varying abundances of AF
in Fig. 9(s). In general, the unmixed abundances of AF488
and AF555 from the TBCR-NMF algorithm [Fig. 9(q) and (r)]
are more sparse than other algorithms. Moreover, the spectra
obtained with NMU in Fig. 9(d), L0-NMF in Fig. 9(h),
and L1-HALS in Fig. 9(l) are clearly different from the cali-
brated spectra in Fig. 6(b). However, the spectra obtained with
S-NMF in Fig. 9(p) and TBCR-NMF in Fig. 9(t) are more
accurate than other algorithms.

The SAD and the average SAD values of three unmixed
endmembers for in vivo experiment II are shown in Table I.

We can see that the TBCR-NMF gets the smallest SAD
(0.0961) and the best unmixing performance.

D. In Vivo Experiments III and IV

In this section, using another two in vivo BALB/c mouse
experiments, we further compare the proposed method
with three recently published unmixing methods which
also utilize the spatial information in the multispectral
images. Specifically, besides the S-NMF that has good
unmixing performance, we also use the following methods
for performance comparison: the beta compositional model
based spatial-spectral (BCM-spatial) algorithm3 [18], sparse
unmixing via variable splitting augmented Lagrangian and
total variation (SparseTV) algorithm4 [19], and regularized
simultaneous forward-backward greedy (RSFoBa) algorithm5

[20]. The BCM-spatial method assumes beta-distributed
endmembers and identifies pixels with similar proportion
values to the pixel under unmixing by identifying the
K-nearest spatial-spectral neighbors. The SparseTV algorithm

3http://engineers.missouri.edu/zarea/2014/11/code-beta-compositional-
model-unmixing/

4http://www.lx.it.pt/~bioucas/publications.html
5http://levir.buaa.edu.cn/publications.html
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Fig. 10. (a)–(d) Raw fluorescence (AF488 and AF555) images for experiment III acquired at the 525, 542, 579, and 624 nm emission filters respectively,
the first two images are excited at 474 nm and the last two images at 500 nm. (e) Classification results. The different unmixed results obtained
with (f)–(h) BCM-spatial, (i)–(k) SparseTV, (l)–(n) RSFoBa, (o)–(q) S-NMF, and (r)–(t) TBCR-NMF.

includes the total variation regularization to the classical
sparse regression formulation to exploit the spatial-contextual
information present in the multispectral images. The RSFoBa
algorithm solves a regularized least squares problem in sparse
semisupervised unmixing by enforcing a spatial-contextual
coherence within the multispectral images. All algorithms
assume that the number of endmembers is 3. Except for
the BCM-spatial method without a priori knowledge, the
SparseTV and RSFoBa methods exploit a priori knowledge
from the large number of spectral signatures in the United
States Geological Survey spectral library, in which there are
some similar spectral signatures simulating the endmember
signatures for fluorescence dyes. All the parameters used in
these algorithms are default values recommended in [18]–[20].

In the last two experiments, the AF488 and AF555 used
as two target fluorophores are diluted to 0.1 μgml−1. The
raw fluorescence images that are sparsely acquired at the 525,
542, 579, 624 nm emission filters for the experiment III are
displayed in Fig. 10(a)–(d), which show that AF488 (50 ng)
is subcutaneously injected at the upper and middle parts of

mouse’s body and AF555 (50 ng) at the middle and bottom
parts of the body. The AF488 is excited at 474 nm and dis-
played nearly on all four channels while the AF555 is excited
at 500 nm and emitted on the 579 nm and 624 nm channels.
Using linear scaling for the pseudo-color mapping can clearly
demonstrate detailed changes in the strong AF, which has clear
spectral overlap with the spectra of AF488 and AF555 in all
spectral channels. In addition, there are also distinct cross-talks
between these two target fluorophores. This strong spectral
overlapping is also displayed clearly at the calibrated spectra
of AF488, AF555, and AF in Fig. 6(c).

Fig. 10(e) shows that the red target regions of the two
fluorophores are successfully separated from the AF region,
though there are two very small red target regions remained
in the background regions of mouse’s head and tail. This
small noisy misclassification does not change the global
target/background segmentation and has not sacrificed the
unmixing performance of TBCR-NMF [Fig. 10(r)–(t)], which
is still the best among all methods (see Fig. 10). It is worth
noting that the global target/background segmentation offered
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TABLE II

SAD AND SAD RESULTS ON THE In Vivo EXPERIMENTS III AND IV (THE SMALLER VALUES MEAN BETTER RESULTS.
THE NUMBERS IN BOLD REPRESENT THE BEST PERFORMANCE)

TABLE III

TOTAL COMPUTATION RUN TIMES (INCLUDING PREPROCESSING TIMES) IN SECONDS FOR THE
FIVE SUM METHODS [INTEL CORE i5-4460 QUAD-CORE 3.2 GHz CPU, RAM 8.0 GB]

by TBCR-NMF is sufficiently effective to not only facilitate
extracting the general endmember information for NMF
initialization but also improve the NMF decomposition by
imposing the sparseness constraint solely on the target regions.
From the visual valuation, the second- and third-best unmixing
performances are achieved by the S-NMF [Fig. 10(o)–(q)]
and RSFoBa [Fig. 10(l)–(n)] methods, respectively. The
BCM-spatial [Fig. 10(f)–(h)] method cannot fully remove
the AF from the separated results of AF488 and AF555
components, while the SparseTV [Fig. 10(i)–(k)] method
achieves the worst performance by making the two target
fluorophores and AF mixed. Due to space limitations, we
only show the unmixed results of experiment III in this paper.
However, the overall performance of these methods in the
experiments III and IV is listed in Table II, where the SAD
and the average SAD values of three endmembers demonstrate
that the proposed method achieves the smallest SAD (0.0683
for experiment III and 0.0778 for experiment IV) and the
best unmixing performance.

The total run times (including the preprocessing times
for mask extraction and/or improved Ncut) of the proposed
TBCR-NMF method and other compared methods are
tabulated in Table III. All the programs are executed in the
MATLAB R2014b environment of an Intel Core i5-4460
Quad-Core 3.2 GHz CPU and 8 GB RAM. As can be
observed, the SparseTV, BCM-spatial, and S-NMF methods
require less computational time than the RSFoBa and
TBCR-NMF methods. In addition, the computation times
of the RSFoBa are approximately 80% of those of the
TBCR-NMF, within which the HALS iterative algorithm
incurs much computational cost compared with the simple
multiplicative updating algorithm adopted within S-NMF. The
run times of improved recursive Ncut and ATGP are only
several seconds that make up only a very small proportion
of total run times. Therefore, our future work is to reduce

computational cost of the HALS-based NMF in TBCR-NMF
framework by optimizing the code and/or adopting smart
update for fast HALS-based NMF. Further details about the
fast HALS solutions and their computational complexity can
be found in the recent works [9], [28], [37].

IV. CONCLUSION AND DISCUSSION

After exploiting the spatial distribution difference
between multiple target fluorophores and background
AF in fluorescence imaging measurements, we initialize and
regularize the proposed TBCR-NMF algorithm with spatial
information of target/background classification to get optimal
fluorescence unmixing results (the source code of TBCR-NMF
algorithm is available at http://www.escience.cn/people/bjqin/
research.html). Specifically, we first propose the improved
Ncut method to classify the fluorescence images into two kinds
of groups: target fluorescence and background AF groups.
We then extract the endmember spectra of multiple target
fluorophores and AF from the classified target/background
groups for accurately initializing the NMF. We have further
regularized the HALS-based NMF decomposition with partial
sparseness constraint being imposed on the abundances of
target fluorophores but not the background AF. Experiments
with synthetic and real fluorescence data show the proposed
TBCR-NMF algorithm can blindly achieve the best unmixing
performance compared with other NMF-based SUM methods
and other state-of-the-art SUM methods that also utilize the
spatial information in multispectral images.
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